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ABSTRACT: The influence of solvent on the individual amino acids of a protein depends not simply on their surface exposure
but rather on the degree of their burial within the structure. This property can be related to a simple geometrical measure termed
circular variance. Circular variance depends on the spatial distribution of neighboring residues and varies from zero to one as a
residue becomes buried. Its only adjustable parameter is a cutoff distance for selecting neighbors. Here, we show that circular
variance can be used to build a fast and effective model of protein solvation energies. For this, we combine a coarse-grain protein
representation with statistical potentials derived by Boltzmann inversion of circular variance probability distributions for different
classes of pseudoatom within a large protein structure database. The method is shown to work well for distinguishing native
protein structures from decoy structures generated in a variety of ways. It can also be used to detect specific residues in
unfavorable solvent environments. Compared to surface accessibility, circular variance calculations are faster, less sensitive to
small conformational changes, and able to account for the longer-range interactions that characterize the electrostatic component
of solvent effects. The resulting solvation energies can be used alone or as part of a more general coarse-grain protein model.

■ INTRODUCTION
Coarse graining is developing rapidly in the field of
biomolecular simulations. By grouping sets of atoms into single
pseudoatoms, it is possible to reduce the number of degrees of
freedom in a macromolecular system, to speed up energy and
force calculations, and also to accelerate movement through
conformational space, thanks to the smoothing of the energy
hypersurface associated with coarse-grain representations.
However, since biological systems depend on the presence of
water, coarse graining needs to be applied not only to the solute
molecules but also to the solvent. This can be done in a way
analogous to the treatment of the solute, by grouping together
several water molecules (typically four) to form pseudosolvent
particles,1 but if this is still too slow, then it is possible to pass
to continuum solvent representations. These can be based on
classical electrostatics via the Poisson−Boltzmann equation,
with a solute envelope separating the high dielectric solvent
from the low dielectric interior of the biomacromolecule.2 Since
the numerical solutions of the Poisson−Boltzmann equation
are still slow to compute, a number of approximate models,
based on the generalized Born equation, have also been
developed.3−5 Alternatively, very fast approaches based on
interparticle distances6 or on the exposure of particles to
solvent can be used.
In the latter case, calculations generally involve solvent-

accessible surface areas (SASA). Building on the pioneering
work of Eisenberg and McLachlan,7 similar methods are still
widely used as a component of coarse-grain models of both
small molecules8 and biomacromolecules and are also a
common component of continuum electrostatic solvent models
where they are used to represent nonpolar contributions.9,10

For proteins, SASA-based models are widely used for both
structure prediction and protein−protein docking.11,12

Although analytic derivatives of surface accessibility can be
calculated13−15 and progress continues to be made in this

area,16 surface accessibility itself has the disadvantage of being
sensitive to the definition of the solute envelope and to small
changes in conformation, which can lead a given atom, or
residue, to become abruptly inaccessible to the solvent. This
has fuelled an interest in the concept of residue depth17 and
attempts to integrate this property into SASA-like solvation
models.18,19

We would like to propose an alternative approach for treating
solvent interactions that replaces accessibility calculations with
circular variance (CV), a simple measure based on the vectorial
distribution of the neighbors around a point.20 This concept,
used in directional statistics to describe 2D angular
distributions, can be extended to 3D and, in the case of
molecules, can quantify the extent to which an atom is buried
within the structure and thus protected from solvent.21 CV has
simple analytical derivatives and can be applied equally well to
atomic or coarse-grain representations. Unlike SASA, CV does
not change abruptly when an atom drops below the solute
surface but rather changes smoothly from 0.0 to 1.0 in passing
from a fully exposed atom to a fully buried one (see Figure 1).
In addition, CV is calculated for neighbors within a chosen
cutoff distance (chosen here to be 10 Å), allowing it to take
into account not only atoms that are in direct steric contact but
also those that could have an electrostatic impact on the
solvation of the target atom (note that 10 Å is close to the
Debye length at physiological ionic strength).
In this work, we develop a simple protein solvation model

based on CV and using a coarse-grain protein representation.
We have chosen to represent protein conformations using the
coarse-grain model proposed by Zacharias,22 where each amino
acid has one backbone pseudoatom placed at Cα and either one
or two pseudoatoms representing the side chain (excepting

Received: February 22, 2012
Published: April 19, 2012

Article

pubs.acs.org/JCTC

© 2012 American Chemical Society 2141 dx.doi.org/10.1021/ct3001552 | J. Chem. Theory Comput. 2012, 8, 2141−2144

pubs.acs.org/JCTC


glycine, which has none). Smaller side chains have a single
pseudoatom (termed SC1) at the geometrical center of the side
chain heavy atoms, while larger side chains (Arg, Gln, Glu, His,
Lys, Met, Phe, Trp and Tyr) have one pseudoatom (SC1) at
the midpoint of the Cβ−Cγ bond and a second (SC2) at the
geometrical center of the heavy atoms beyond Cβ. This
representation generates a total of 48 pseudoatom classes
(assuming Cα is residue dependent).

■ COMPUTATIONAL METHODS

The CV of pseudoatom i (CVi) is calculated as one minus the
modulus of the vector sum of the unit vectors ri/|ri| from i to all
neighbors within a cutoff distance rc (here we set rc to 10 Å),
divided by the number of these vectors ni:
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In an earlier publication, Mezei somewhat surprisingly found
that a modified formula (termed CVW), which gives more
weight to distant neighbors, performed better in some cases:21
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We were able to show that this formulation actually works
not by giving more weight to distant neighbors but by giving
less weight to bound neighbors, whose spatial distribution
around the center i is virtually constant. Calculating CVi
without taking bound neighbors into account gives results
that are indistinguishable from CVi

W (see Figure S1 in the
Supporting Information). This formulation was found to the
best for our purposes and is used here.
In order to obtain an effective solvation energy (Si) for

pseudoatom i, we first calculate the probability distribution (Pi)
of CVi values for each class of pseudoatom using a large
database of experimental protein structures. This database
contains a total of 1202 structures of globular, soluble proteins
sharing less than 20% sequence identity and having no missing
atoms, selected from the corresponding PISCES data set.24

Figure S2 in the Supporting Information shows the CV
probability distributions for all classes of pseudoatom. As
expected, hydrophilic pseudoatoms are generally exposed to
solvent with CV distributions weighted toward low values,
while hydrophobic pseudoatoms are generally buried and have
distributions weighted to high values.

We can now calculate an effective solvation energy Si for each
pseudoatom class using Boltzmann inversion (where kBT =
0.593 kcal mol−1 at 25 °C):
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Note that the observed CV probability distributions Pi are
weighted by a reference probability PR calculated by averaging
the Pi over all structures and all pseudoatom classes (see
Supporting Information). In order to simplify calculations, the
solvent energies can be fitted accurately using third-degree
polynomials (see Table S1 in the Supporting Information). The
total solvation energy (CVSE) for a molecule with N
pseudoatoms then becomes
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where k is the class of pseudoatom i. Because of the finite range
of CV, each pseudoatom will have a minimum value of its
solvation energy, termed Si

M (see Table S1, Supporting
Information). This corresponds to the pseudoatom being in
its ideal environment with respect to the solvent. More positive
values within a given protein structure, Si

P, quantify unfavorable
environments, and the difference Si

P − Si
M, which we term a

solvation energy deficit (SED), can be used to analyze specific
protein conformations on a residue-by-residue basis.
In terms of efficiency, CV calculations only require distance

calculations between neighboring pseudoatoms (typically of the
order of 10 distances per center). This procedure can be
accelerated by maintaining a pair list with an appropriate cutoff
distance. The total number of distance calculations is roughly
100 times less than for 2D slice25 or surface grid methods26 and
the corresponding analytic derivatives are easily obtained.

■ RESULTS
We can now ask whether CV has been able to capture the basic
physics underlying solvation energies. In order to test this, we
calculated the total CV solvation energy (CVSE) for three sets
of protein decoys created using different strategies.27 The
solvation energy alone would not normally be expected to
correctly distinguish native states from decoys, since it ignores
changes in conformational energy (hydrogen bonding, steric or
torsional strain, etc.). However, the results we obtain show that
poor solvation is a dominant factor. These calculations use only
side chain solvation energies since the Cα and SC1 probability
distributions were generally very similar. We also checked that

Figure 1. Circular variance (CV, left) versus accessible surface area (ASA, right) for a heat shock protein (PDB 3FH2). The view illustrates a 12 Å
slice through the center of the protein. The coloring goes from orange for exposed atoms (CV ≈ 0, ASA ≈ 30 Å2) to blue for buried atoms (CV ≈ 1,
ASA ≈ 0 Å2). The CV values calculated for the pseudoatom model of the heat shock protein have been mapped onto the all-atom representation.
The ASA values were computed using NACCESS with standard parameters.23
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changing the CV cutoff from 10 Å to either 8 or 12 Å had little
effect.
The first test set (termed “misfold”) contains a single decoy

for each of 26 proteins, created by threading the native
sequence onto another protein structure and then optimizing
the conformation using Monte Carlo simulated annealing.28 In
all cases, the CV solvation score was more negative for the
native protein than for the decoy with an average energy
difference of −33 kcal mol−1 (Figure 2).

The second and third decoy sets (termed “4state_reduced”
and “lattice_ssfit”) contain between 600 and 2000 decoys for
each protein. The former set involved a combinatorial
generation of multiple substates for 10 residues within each
protein followed by energy minimization,29 while the latter set
used conformations initially generated on a tetrahedral lattice
and then optimized in off-lattice space.30

Figure 3 shows that, with one notable exception, the CV
solvation energy places the native structure at, or close to, the
optimal solvation energy compared to the decoys. For the
4state_reduced set, the native structure is within the best 5% of
energies in all but two cases (1sn3 7% and 2cro 8%), and for
the lattice_ssfit set, the native structure has the optimal energy
in all but one case (1dtk-A, in the top 0.2%).
The notable exception involves the protein 1trl-A, a C-

terminal fragment of thermolysin. The results in Figure 3 refer
to this protein fragment in a monomeric state, although it has
been shown to exist in solution as a dimer.31 Using the minimal
solvation energy for each class of pseudoatom, we can calculate
the solvation energy deficit for each pseudoatom in a given
protein structure, as described above. Significantly positive SED
values indicate pseudoatoms that are in unfavorable solvent
environments. The results for 1trl are shown in Figure 4.
We can see that several residues on the surface of 1trl-A are

indeed poorly solvated. Taking into account the dimeric
structure improves the solvation energy of the monomer by
−9.4 kcal mol−1 and also explains why the native monomer is
relatively unstable compared to many of its decoy structures.
The last example uses more than 6000 decoy conformations

of the thermostable subdomain of the chicken villin headpiece

generated during molecular dynamics simulations in explicit
solvent, starting either from the native structure or from various
non-native structures. Each decoy conformation extracted from
the simulations was energy minimized using an implicit solvent
model.32 This set includes decoys up to 12 Å rmsd (calculated
using only Cα atoms) away from the native conformation.
Figure 5 shows that the best CV solvation energies are

obtained for snapshots from the simulation beginning with the
native structure and also shows a reasonable correlation
between the CV solvation energies and the rmsd values of
each simulation. Quantitatively, the CV solvation energies
perform as well as much more costly methods involving both
molecular mechanics and continuum electrostatic terms (MM/
PBSA or MM/GBSA) using the quality measures applied in the
publication by Fogolari et al.32 (see Table S2 in the Supporting
Information).

■ CONCLUSIONS
In conclusion, the results presented here suggest that CV is
indeed a useful starting point for modeling protein solvation. It
has the advantage of measuring the degree of burial, rather than
simple surface accessibility, taking into account more distant
neighbors that can contribute electrostatically and being
sufficiently fast to make it an interesting option in coarse-
grain approaches. We have also found that excluding bound

Figure 2. CV solvation energy differences between the native and the
decoy structure of the 26 proteins belonging to the “misfold” decoy
set.28 The PDB code for each protein is shown on the left of the figure.

Figure 3. Distribution of CVSE for protein decoys belonging to the
4state_reduced (above) and lattice_ssfit (below) sets. The PDB codes
for each protein are shown on the left. Darker shading indicates a
higher density of decoy solvation energies, and the red bars indicate
the solvation energy of the native protein.

Figure 4. SED for each pseudoatom at the dimerization interface of
the protein fragment 1trl, calculated using the monomer structure
(left) or using the dimer (right). The blue to red scale (kcal mol−1)
indicates increasingly positive SED values (poorer solvent environ-
ments). The values for these all-atom representations have been
mapped from calculations with the corresponding pseudoatom model.
Terminal residues are omitted for clarity.
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neighbors from CV calculations leads to the better results for all
the decoy tests we performed (typically improving the scores of
the worst cases by several percent and also improving the
momomer solvation energy for dimeric 1trl by 3 kcal mol−1).
Our model could be adapted in a number of ways. The CV-

based solvation term could be derived for an all-atom
representation or fitted to data other than experimental
structures. It could equally well be integrated into a more
general coarse-grain force field, using an iterative refinement
procedure to distribute energetic contributions between one-
and two-body terms. We are indeed using this approach in the
PaLaCe model currently under development.
Finally, as shown by the 1trl protein fragment, looking at

departures from optimal solvation energy on a residue-by-
residue basis may be a useful way of detecting anomalies with
protein structures.
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Rhône-Alpes project CIBLE, and the ANR project EXPE-
NANTIO.

■ REFERENCES
(1) Yesylevskyy, S. O.; Schaf̈er, L. V.; Sengupta, D.; Marrink, S. J.
PLoS Comput. Biol. 2010, 6, e1000810.
(2) Baker, N. A. Curr. Opin. Struct. Biol. 2005, 15, 137−143.
(3) Tsui, V.; Case, D. A. Biopolymers 2000, 56, 275−291.

(4) Bashford, D.; Case, D. Annu. Rev. Phys. Chem. 2000, 51, 129−
152.
(5) Feig, M.; Onufriev, A.; Lee, M. S.; Im, W.; Case, D. A.; Brooks, C.
L. J. Comput. Chem. 2004, 25, 265−84.
(6) Levitt, M. J. Mol. Biol. 1976, 104, 59−107.
(7) Eisenberg, D.; McLachlan, A. D. Nature 1986, 319, 199−203.
(8) Knight, J. L.; Brooks, C. L. J. Comput. Chem. 2011, 32, 2909−
2923.
(9) Cerutti, D. S.; Ten Eyck, L. F.; McCammon, J. A.; et al. J. Chem.
Theory Comput. 2005, 1, 143−152.
(10) Lopes, A.; Alexandrov, A.; Bathelt, C.; Archontis, G.; Simonson,
T. Proteins 2007, 67, 853−867.
(11) Wang, T.; Wade, R. C. Proteins 2003, 50, 158−169.
(12) Li, L.; Guo, D.; Huang, Y.; Liu, S.; Xiao, Y. BMC Bioinformatics
2011, 12, 36−44.
(13) Fraczkiewicz, R.; Braun, W. J. Comput. Chem. 1998, 19, 319−
333.
(14) Sridharan, S.; Nicholls, A.; Sharp, K. A. J. Comput. Chem. 1995,
16, 1038−1044.
(15) Perrot, G.; Cheng, B.; Gibson, K. D.; Vila, J.; Palmer, K. A.;
Nayeem, A.; Maigret, B.; Scheraga, H. A. J. Comput. Chem. 1992, 13,
1−11.
(16) Klenin, K. V.; Tristram, F.; Strunk, T.; Wenzel, W. J. Comput.
Chem. 2011, 32, 2647−2653.
(17) Chakravarty, S.; Varadarajan, R. Structure Fold Des. 1999, 7,
723−732.
(18) Liu, S.; Zhang, C.; Liang, S.; Zhou, Y. Proteins 2007, 68, 636−
645.
(19) Allison, J. R.; Boguslawski, K.; Fraternali, F.; van Gunsteren, W.
F. J. Phys. Chem. B 2011, 115, 4547−4557.
(20) Mardia, K. V. Jupp, P. E. Directional statistics; John Wiley & Sons
Inc: Chichester, U.K., 2000.
(21) Mezei, M. J. Mol. Graphics Modell. 2003, 21, 463−472.
(22) Zacharias, M. Protein Sci. 2003, 12, 1271−1282.
(23) Hubbard, S. J. Thornton, J. M. NACCESS; University College
London: London, U.K., 1993.
(24) Wang, G.; Dunbrack, L. Bioinformatics 2003, 19, 1589−1591.
(25) Lee, B.; Richards, F. M. J. Mol. Biol. 1971, 55, 379−400.
(26) Lavery, R.; Pullman, A. Biophys. Chem. 1984, 19, 171−181.
(27) Samudrala, R.; Levitt, M. Protein Sci. 2000, 9, 1399−401.
(28) Holm, L.; Sander, C. J. Mol. Biol. 1992, 225, 93−105.
(29) Park, B.; Levitt, M. J. Mol. Biol. 1996, 258, 367−392.
(30) Samudrala, R.; Xia, Y.; Levitt, M.; Huang, H. S. Pac. Symp.
Biocomput. '99 1999, 4, 505−516.
(31) Rico, M.; Jimenez, M. A.; Gonzalez, C.; De Filippis, V.; Fontana,
A. Biochemistry 1994, 33, 14834−14847.
(32) Fogolari, F.; Tosatto, S.; Colombo, G. BMC Bioinformatics 2005,
6, 301−313.

Figure 5. Cα rmsd values with respect to the native structure of the
thermostable domain of the villin headpiece (PDB 1VIII) versus CV
solvation energies (CVSE). The points correspond to energy-
minimized snapshots from molecular dynamics simulations using
different starting conformations, native or non-native (F1, F3, F4, F7).
Each simulation is color coded. The native X-ray structure is indicated
by the large blue circle (bottom left).
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